Close Tue: 10.2/13.2, 10.3
Close Thu: 13.3 (finish much sooner) Midterm 1, Thursday, Apr. $20^{\text {th }}$
Covers 12.1-12.5, 10.1-10.3, 13.1-13.3

Polar

1. Be able to plot points.
2. Be able to convert to Cartesian.
3. Some calculus:

If $r=f(\theta)$, then

$$
\begin{gathered}
x=r \cos (\theta)=f(\theta) \cos (\theta) \\
y=r \sin (\theta)=f(\theta) \sin (\theta)
\end{gathered}
$$

so

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)}{f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)}
\end{aligned}
$$

Example (from an old midterm):
Consider $r=3-6 \sin (\theta)$
(a) Find (x, y) coordinates of the y-intercepts.
(b) Find the equation for the tangent line at the negative x-intercept. (Put in the form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$)

10.2/13.2, 13.3 Calculus on Curves

Parametric Example (another old exam):
Consider the curve given by

$$
x=t^{3}-4 t, y=5 t^{2}-t^{4}
$$

The curve intersects the positive y-axis at the same y-intercept twice. Find the two different
 tangent slopes at this point.

Distance Traveled on a Curve

The dist. traveled along a curve from $t=a$ to $t=b$ is given by $\int_{a}^{b}\left|\boldsymbol{r}^{\prime}(t)\right| d t=$

$$
\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

(Note: 2D is same without the $z^{\prime}(t)$). If the curve is "traversed once" we call this arc length.

The distance from 0 to t is

$$
s(t)=\int_{0}^{t}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(u)\right| d u=\text { distance }
$$

We call this the distance/arc length function.
Note:

$$
\frac{d s}{d t}=\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|=\text { speed }
$$

Example: $\mathrm{x}=\cos (\mathrm{t}), \mathrm{y}=\sin (\mathrm{t})$
(a) Find the distance traveled by this object from $t=0$ to $t=6 \pi$.
(b) Find the arc length of the path over which this object is traveling.

Example: $\mathrm{x}=3+2 \mathrm{t}, \mathrm{y}=4-5 \mathrm{t}$
(a) Find the arc length (from 0 to t).
(b) Reparameterize in terms of $s(t)$.

13.3 (part 1) Curvature

The curvature at a point, K, is a measure of how quickly a curve is changing direction at that point. That is, we define

$$
K=\frac{\text { change in direction }}{\text { change in arc length(distance) }}
$$

Roughly, how much does your direction change if you move a small amount ("one inch") along the curve? Let
$\overrightarrow{\boldsymbol{T}_{1}}=$ unit tangent vector at a point
$\overrightarrow{\boldsymbol{T}_{2}}=$ unit tangent vector one inch later
so

$$
\mathrm{K} \approx\left|\frac{\overrightarrow{\boldsymbol{T}_{2}}-\overrightarrow{\boldsymbol{T}_{\mathbf{1}}}}{\text { one inch }}\right|=\left|\frac{\Delta \overrightarrow{\boldsymbol{T}}}{\Delta s}\right|
$$

We formally define curvature to be the limit as the distance goes to zero, which gives

$$
K=\left|\frac{d \stackrel{\rightharpoonup}{T}}{d s}\right|
$$

Curvature is challenging to compute directly using the definition, so we have some shortcuts.
$1^{\text {st }}$ shortcut:

$$
K(t)=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\left|\frac{d \overrightarrow{\boldsymbol{T}} / d t}{d s / d t}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}
$$

$2^{\text {nd }}$ shortcut

$$
K(t)=\left|\frac{d \overrightarrow{\mathbf{T}}}{d s}\right|=\frac{\left|\overrightarrow{\vec{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t) \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|^{3}}
$$

And in 2D for a function $y=f(x)$, this becomes

$$
K(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}}
$$

Proof of short cuts:

Lemma:
$\overrightarrow{\boldsymbol{T}}$ and $\overrightarrow{\boldsymbol{T}}^{\prime}$ are always orthogonal.
Proof of lemma:
Since $\overrightarrow{\boldsymbol{T}} \cdot \overrightarrow{\boldsymbol{T}}=|\overrightarrow{\boldsymbol{T}}|^{2}=1$, we can
differentiate both sides to get

$$
\overrightarrow{\boldsymbol{T}}^{\prime} \cdot \overrightarrow{\boldsymbol{T}}+\overrightarrow{\boldsymbol{T}} \cdot \overrightarrow{\boldsymbol{T}}^{\prime}=0
$$

So $2 \overrightarrow{\boldsymbol{T}} \cdot \overrightarrow{\boldsymbol{T}}^{\prime}=0$. Thus, $\overrightarrow{\boldsymbol{T}} \cdot \overrightarrow{\boldsymbol{T}}^{\prime}=0$. (QED)
Theorem: $\frac{\left|\overrightarrow{\vec{r}}^{\prime}(t)\right|}{|\overrightarrow{\mid r}(t)|}=\frac{\left|\vec{r}^{\prime}(t) \times \bar{r}^{\prime \prime}(t)\right|}{\left|\left.\right|_{\boldsymbol{r}}{ }^{\prime}(t)\right|^{3}}$
Proof of theorem:
Since $\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{r^{\prime}}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{\prime}}$, we have

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| \overrightarrow{\boldsymbol{T}}(t) .
$$

Differentiating this gives (prod. rule):

$$
\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{\prime} \overrightarrow{\boldsymbol{T}}(t)+\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| \overrightarrow{\boldsymbol{T}}^{\prime}(t)
$$

Take cross-prod. of both sides with $\overrightarrow{\boldsymbol{T}}$:

$$
\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}=\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{\prime}(\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}})+\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|\left(\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}}^{\prime}\right) .
$$

Since $\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}}=\langle 0,0,0\rangle$ (why?) and $\overrightarrow{\boldsymbol{T}}=\frac{\vec{r}^{\prime}}{\left|\overrightarrow{\boldsymbol{r}^{\prime}}\right|}$, we have

$$
\frac{\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}=\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|\left(\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}}^{\prime}\right) .
$$

Taking the magnitude gives
$\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}=\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|\left|\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}}^{\prime}\right|=\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right||\overrightarrow{\boldsymbol{T}}|\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right| \sin \left(\frac{\pi}{2}\right)$,
Since $|\overrightarrow{\boldsymbol{T}}|=1$, we have

$$
\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|=\frac{\left|\vec{r}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\vec{r}^{\prime}\right|^{2}}
$$

Therefore

$$
K=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}}
$$

Note:
To find curvature for a 2D function $y=f(x)$, we can form a 3D vector function as follows

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{r}}(x)=\langle x, f(x), 0\rangle \\
& \text { so } \quad \overrightarrow{\boldsymbol{r}}^{\prime}(x)=\left\langle 1, f^{\prime}(x), 0\right\rangle \quad \text { and } \\
& \overrightarrow{\boldsymbol{r}}^{\prime \prime}(x)=\left\langle 0, f^{\prime \prime}(x), 0\right\rangle \\
& \left|\overrightarrow{\boldsymbol{r}}^{\prime}(x)\right|=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \\
& \overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}=\left\langle 0,0, f^{\prime \prime}(x)\right\rangle
\end{aligned}
$$

Thus,

$$
\begin{aligned}
K(x)= & \frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}} \\
& =\frac{\left|\boldsymbol{f}^{\prime \prime}(x)\right|}{\left(\mathbf{1}+\left(\boldsymbol{f}^{\prime}(\boldsymbol{x})\right)^{2}\right)^{3 / 2}}
\end{aligned}
$$

